
www.manaraa.com

A General Model for Event Speci�cation in Active DatabaseManagement SystemsDetlef ZimmerAxel MeckenstockC{LAB�F�urstenallee 11D-33102 Paderbornfdetjaxelg@c-lab.de Rainer UnlandUniversit�at -GH- EssenSch�utzenbahn 70D-45117 Essenunlandr@informatik.uni-essen.deAbstractActive database systems have been developed for ap-plications that need an automatic reaction in responseto certain conditions being satis�ed or certain eventsoccurring. Events can be simple in nature or com-plex. Complex events can be built from simpler oneswith the help of event operators of an event algebra.While numerous papers propose extensions of the set ofevent operators only very few address the foundations ofthe semantics of complex events. For this reason mostproposals mix di�erent concepts (aspects) of complexevents and o�er event operators as the only means tocontrol their semantics. This leads to peculiarities as as-pects are not handled uniformly by operators and haveother semantics than expected or operators of di�erentalgebras which, on the �rst glance, look the same mayhave di�erent semantics. We have developed a formalmeta model for complex events. It splits up the seman-tics of complex events into elementary, essentially inde-pendent dimensions. The resulting elementary buildingblocks can be used to de�ne exible and extensible eventalgebras. Moreover, our meta model helps to detect andeliminate peculiarities like the ones discussed above.1 IntroductionRules are used in Active Database Sys-tems to monitor situations of interest and totrigger a timely response when these situa-tions occur. Rules are useful for a number ofdatabase tasks: They can enforce integrity con-straints, compute derived data, control data ac-�Cooperative Computing & Communication Labo-ratory (Siemens Nixdorf Informationssysteme AG, Uni-versit�at Paderborn)

cess, gather statistics and more. In this paperECA-Rules (Event-Condition-Action-Rules)are considered. The condition of a rule is eval-uated when its triggering event occurs, and ifit is satis�ed its action will be executed.Examples for triggering events, denoted as ei,are the execution of update or retrieval opera-tions provided by the DML of the underlyingdatabase system. Such events are pre-de�nedand called primitive events. To react onmore sophisticated situations complex eventshave been introduced. They are de�ned fromsimpler ones by using operators of an eventalgebra.For instance, events based on the sequence op-erator, denoted like e1;e3, are triggered when-ever e3 occurs provided that e1 has already oc-curred. Another example are negation oper-ators which can be used to de�ne events, de-noted like e1;:e2;e3, which are triggered when-ever e1;e3 occurs provided that e2 did not occurbetween the occurrence of e1 and e3.In general, complex events are triggered by aset of primitive events which often have to oc-cur additionally in a prede�ned order. Theevents which caused a complex event to occurare bound to it and are used for the de�nition ofits parameters. The parameters of an event areused to transfer information about the event tothe other rule parts. Sometimes there may bedi�erent events to be chosen for the binding toa complex event.In this paper we present a formal meta modelwhich de�nes the semantics of complex events.It is based on the three basically indepen-dent dimensions event condition, event in-1

www.manaraa.com

stance selection and event instance con-sumption, which can be further split in(sub)dimensions. The event condition is re-sponsible for the speci�cation of the point intime events occur, the event instance selec-tion de�nes which events are bound to a com-plex event and the event instance consump-tion determines when events get invalid, i.e.they cannot be considered for the detection ofcomplex events any longer.In most event algebras event operators are theonly way to specify these di�erent dimensionsthus leading to a mixture of concepts whichmakes the understanding of an inherent com-plex area even more di�cult. We will show thatcurrently in existing event algebras there are anumber of peculiarities and irregularities whichmainly can be put back to these mixtures.Let us consider, e.g., event e1 to be trig-gered before e3 is triggered twice. In Snoop[CKAK94], as we will show later, this sequencecause e1;e3 to be triggered twice while e1;:e2;e3is triggered only once.Literature does only provide relatively few at-tempts for the subdivision of the semantics ofcomplex events. In Snoop [CKAK94] parame-ter contexts were introduced. They are respon-sible for the determination of the set of eventsthat are bound to complex events. SAMOS[Gat94] copes with this semantics by the intro-duction of two additional operators called '*'and 'last', which select the oldest ('*') or mostrecent event ('last') out of a set of events.In the following section we introduce some ba-sic de�nitions which are used for the de�nitionof our meta model described in section 3. Insection 4 our meta model is used to de�ne thesemantics of Snoop [CKAK94] and shows howit can be used to detect irregularities. Section 5compares our model with the models presentedin literature, and section 6 concludes the paper.2 Basic De�nitionsThis section introduces the basic de�nitions asfar as they are needed for the further discus-sion of our concepts. A complete description ofour formalized model can be found in [Zim96].Where useful, we will present de�nitions andalgorithms in a C++-like notation.

De�nition 1:An event is an indicator for the occurrence ofa situation which may require an (automatic)reaction from the system. It is de�ned to be aninstantaneous, atomic (happens completely ornot at all) occurrence at one point in time.The call of a database operation like the mani-pulation or retrieval of some data is an examplefor an event.De�nition 2:For this paper we assume an equi-distant dis-crete time domain TD having 0 as the originand consisting of points in time represented bynon-negative integers.In general events should be permitted to oc-cur simultaneously. Some models (see [Gat94,CKAK94]) exclude such a behaviour. Howeverwe believe that such restrictions are not ade-quate as one single event may trigger a numberof other (complex) events, which may even beof the same type1.De�nition 3:In the system a concrete event is representedby an event instance (EI) which contains thenecessary information about the speci�c event.An event type (ET) describes the commonessentials of a su�ciently similar set of eventinstances on a more abstract level. It speci�esthe occasion at which its events occur, de�nesthe parameters of the event instances and laysdown the impact their occurrences have on oc-currences of other events.Formally, event types are objects of the classEVENT TYPE, which will be introduced later.An update operation on some data x, e.g., maybe invoked several times. In this case the eventtype speci�es the pattern of the update opera-tion. The actual invocation of the update oper-ation is an event and this event is representedinternally, that is in the system, by an eventinstance.An event instance contains information likethe identi�cation of its event type (type), theevent occurrence time (time), the actual set ofevent instances that represent those events thatcaused this event to occur and that are boundto it (event seq) and other type speci�c para-1In [CKAK94] a so-called parameter context contin-uous was introduced by which a single event can triggermultiple complex events of one type.2

www.manaraa.com

meters (type spec data).Formally, event instances are objects of theclass EVENT (or of a subclass of the classEVENT):class EVENT{ EVENT_TYPE *type;TD time;EVENT_SEQUENCE *event_seq;void *type_spec_data;}De�nition 4:There are a number of elementary event types,called primitive event types (PET), whichare pre-de�ned. Primitive event types are com-monly classi�ed into either database or tem-poral or external event types. Database eventtypes correspond to database operations like,e.g., data manipulation or transaction opera-tions while temporal event types specify pointsin time either absolutely (e.g. "at 5 o'clock atthe 5th of november 1996") or relatively2 (e.g."5 minutes after calling the update operationon the data x"). External event types repre-sent events that occur outside of the databaseor even the computer system and are commu-nicated (signalled) to the database system byspecial database operations.For the detection of complex events it is impor-tant to know which events have occurred andin what order they were triggered. To describethis information we introduce event instance se-quences.De�nition 5:An event instance sequence (EIS) is apartially ordered set of event instances thathave occurred in the system. The order ofthe event instances corresponds to the orderof their event occurrence times. It can bedi�erentiated between instance oriented andtype oriented event instance sequences. In-stance oriented event instance sequences areused in event instances (see above) to representthe events which caused this event to occur.The type oriented event instance sequences aremaintained for each event type and containonly those event instances of the system that2As the complex event type is the essential part ofthe relative temporal event types (RTET), its semanticsis similar to the semantics of complex types withouto�set. Thus we will not consider RTETs in this paperin more detail.

are relevant for the detection of complex eventsof this type. Formally, event instance sequencesare de�ned by the following class:class EVENT_SEQUENCE{ list of EVENT event_list;insert(EVENT);delete(EVENT);TDxTD interval();}The methods insert() and delete() insert anddelete the given event instance. The methodinterval() computes the time interval spannedby the event times of the event instances be-longing to the sequence.The event instance sequence that contains onlyevent instances of primitive event types thathave occurred until a speci�ed point in time kis called primitive event instance historyand is denoted as EIHprimk .The event instance history EIHk is the uni-�cation of all event instances of all event typesde�ned in the system, that have occurred be-tween the origin 0 and a given point in time k(k 2 TD).Applications sometimes need to react on morecomplex situations than expressible by primi-tive events. For this reason complex events areintroduced, which consist of a combination ofprimitive events:De�nition 6:A complex event type (CET) can be con-structed by combining simpler event types withthe help of the operators of an event algebra.The de�nition of a complex event type consistsof an operator (op) which combines a numberof event types. These types are called compo-nent event types (component types) whilethe constructed complex event type is calledparent event type (parent types). Complexcomponent event types (CPET) can be usedto construct even more complex event types.The recursive construction of (complex) eventtypes leads to an event type hierarchy wherethe primitive event types constitute its leaves.Formally, event types are de�ned by the follow-ing class:class EVENT_TYPE{ list of EVENT_TYPE parent_types;OPERATOR op;list of EVENT_TYPE component_types;3

www.manaraa.com

EVENT_SEQUENCE seq;EVENT_SEQUENCE detect();}The detection of a complex event is per-formed by the method detect(). Wheneveran event is detected an object of the classEVENT is instantiated and its member vari-ables are set. For PET the member variablescomponent types, op and seq are empty.We assume that event types are independentof each other, i.e. events respectively event in-stances of a component event type that is usedby several (parent) event types are available forall these types.For the following discussions we use capitals todenote event types and small letters to denoteevents respectively event instances. We will useEi to denote an event type, Eij to denote itscomponent event types and EISEi to denoteits event instance sequence. We will use esi todenote the events of Ei, eisi to denote the eventinstance representing esi and EISeisi to denotethe event instance sequence of eisi . The upperindex s reects the order in which the events re-spectively the event instances of Ei occur. Theevent instances of an event instance sequenceare denoted in the order of their timestamps.Consider a complex event that is to be signalledwhenever an event of an event type E1 doesoccur before an event of another event type E2occurs. Such complex events are represented byan event type E3 which is based on the eventtypes E1 and E2 combined by a sequence op-erator. The sequence operator is denoted as';' and the event type E3 as E3 := ; (E1, E2).Note:Time plays a subtle role on several levels ofevent detection and treatment. Since, in gen-eral, it will take some time to detect a (sim-ple) event the "logical" event detection timewill di�er from the real physical event occur-rence time, that is it will be later. It must beguaranteed that this delay in the detection ofevents does not cause a change in the order inwhich events occur on the logical level in com-parison to the real order. Especially complexevents will span a time interval since they con-sist of several (simple) events. Therefore, a se-lection strategy is necessary which determinesthe point in time out of the time interval that

is assigned to the complex event as its event oc-currence time. Typical selection strategies arethe begin or the end of the time interval. Weassume that the method time selector () assignsa correct (logical) event occurrence time to anevent instance.De�nition 7 :The event occurrence times of the event in-stances belonging to EISeisi of a complex eventinstance eisi de�ne a time interval that reectsthe period during which the detection of esi tookplace. The event instances whose event occur-rence times are equal to the left side of the timeinterval esi ! event seq:interval() representthe initiator events (initiators) of esi , theevent instances whose event occurrence timesare equal to the right side of this time inter-val represent the terminator events (termi-nators) of esi . The events which are neitherinitiators nor terminators are the mediatorsof esi . While initiators mark the beginning ofthe detection process of complex events termi-nators mark the occurrence of complex events.For reasons of simplicity we assume that everyevent has only one initiator and one termina-tor.De�nition 8 :The Global Event Detection Algorithm isexecuted whenever an event instance eiprim isinserted into EIHprim. It consists of the fol-lowing steps:1. for all E in ei_prim->type->parent_types doE->seq.insert(ei_prim);2. for every E->seq.insert(e)event_instance_list := E.detect()if event_instance_list not nilfor all e in event_instance_list doEIH.insert(e);for all E in e->type->parent_types doE->seq.insert(e);We assume that primitive events are detectedby the system, that the system generates andinserts the corresponding instances into theevent instance history EIHprim and that theorder of the event occurrence times of these in-stances reect the order in which the eventsthey represent have occurred.In the �rst step eiprim is distributed to the ap-propriate event instance sequences of its par-ent types. In the second step for every eventtype Ei and for every insertion of an event in-stance into its EISEi the event detection algo-rithm, speci�ed by the detect() method of Ei4

www.manaraa.com

(for more details see section 3.5), is executed.The instances eisi of the detected events esi areinserted into the EISEj of their parent typesEj . An execution cycle of the detect() meth-ods terminates if no new event is detected orif the given event type does not have a par-ent type. The global event detection algorithmterminates when the execution cycles of all de-tect() methods have terminated.The insert() and detect() methods can be exe-cuted concurrently, i.e. events can concurrentlybe inserted into di�erent type oriented event in-stance sequences, and the detect() method canconcurrently be executed with other detect()methods. However, it has to be guaranteedthat event instances are inserted into the eventinstance sequences in the order of their eventoccurrence times.The detect() method will be considered in fur-ther detail in the following section.3 The Meta ModelThis section presents the di�erent dimensionsof complex events. A detailed formal de�ni-tion can be found in [Zim96]. We focus on sin-gle event types Ei and their event instance se-quences EISEi. The interactions between thedi�erent event types and their event instancesequences are handled by the global event de-tection algorithm.Consider the event instance sequence EIS1 :=ei11 ei21 ei13 ei12 ei22 ei32 ei23. There are severalquestions that have to be answered to de�nethe semantics of complex events:1. What concrete sequences of events triggera complex event?For the de�nition of such sequences a num-ber of aspects have to be considered: thetype of the instances belonging to a se-quence, the number and the order of theiroccurrences, the non-existence of instancesof a type, etc. The event instance se-quence EIS1, e.g., triggers an event e14 ofthe event type E4 := ;(E1, E2, E3). But itdoes not trigger an event of a type whichrequires that no instance of E3 is allowedto occur between the instances of E1 andE2.

2. What parts of the event instance historycan be used in the condition- and actionpart of a rule?The event instances which can be accessedin these rule parts are de�ned by the eventinstance sequence event seq of the complexevent instance representing the event thathad triggered the rule. In general thereare several possibilities for its de�nition.Consider the event e14 of E4 triggered byEIS1. The event instance sequence of ei14can be de�ned as (ei11 ei12 ei23) or (ei11 ei32ei23) or (ei11 ei21 ei12 ei22 ei32 ei23) or by anyother valid combination.3. What instances are exclusively consumedby a complex event instance, that is whatinstances disappear after they were usedby this complex event instance, and whatinstances are only used but not consumedby a complex event instance?Event instances of the type E4 may, e.g.,consume the necessary instances of typeE1 and E2 while they preserve instances ofE3. Thus, by EIS1 two events e14 and e24of E4 may be triggered, where ei14 containsthe event instance sequence (ei11 ei12 ei23)and ei24 (ei21 ei22 ei23).Each question addresses a di�erent dimensionof an event speci�cation. We will call thesedimensions event condition, event instance se-lection, and event instance consumption. In thefollowing we will concentrate on the semanticsof each dimension; the complete syntax is listedin the appendix.3.1 Event conditionThe event condition part of a type Ei (shouldnot be confused with the condition part of arule) speci�es the pattern, i.e. the sequence ofevent types, that triggers events of Ei. It has toconsider four aspects. We will introduce themwith the help of the following example.Consider the event instance sequence EIS2 :=ei11 ei21 ei13 ei12 ei23 and the event types E4 :=; (E1, E2, E3), E5 := ; (E1, E2) and E6 := ;(E3, E5).The event type E4 speci�es that event instancesof the types E1, E2 and E3 must occur in the5

www.manaraa.com

same order as it is speci�ed by the sequenceoperator in the de�nition of E4 (pattern). Anevent e14 of type E4 will be triggered as soon asei23 occurs. However, the initial time intervalthat belongs to ei14 starts with ei11 and termi-nates by ei23. Within this time interval there aretwo instances of event type E1 (ei11 and ei21) andtwo instances of event type E3 (ei13 and ei23). Ithas to be clari�ed how many of these instancesare at least and at most necessary to trigger anevent of type E4 (frequency). In the event typeE5 it is speci�ed that �rst an instance of typeE1 has to occur and then an instance of typeE2. However, it remains unclear whether theseevent instances are to be tightly coupled (with-out interruption by any other event instance) orloosely coupled (arbitrary other event instancescan occur between the instances of E1 and E2)(coupling). During the detection of an event e15of E5 (initiated by e11 or e21 and terminated bye12) an event e13 of E3 occurs. Now the event oc-currence time of the instance ei15 may be takenfrom ei12 and thus the event occurrence time ofei13 may be older than that of ei15. The typeE6 must specify whether it allows such concur-rency (concurrency).3.1.1 PatternEvent operators help to de�ne the shape of thepattern that uniquely identi�es events of thatevent type. Our model provides the followingbasic, however complete set of operators:The ==-operator (simultaneous operator)requires that instances occur simultaneously,the ;-operator (sequence operator) requiresthat instances occur in a speci�ed order, the^-operator (conjunction operator) requiresthat a number of instances occur in any or-der, the _-operator (disjunction operator)requires that at least one of the speci�ed in-stances occurs and the :-operator (negationoperator) requires that the given instance(s)should not occur in a given period respectivelyinterval.Periods are speci�ed in form of event instanceswhich mark the beginning and the end of thetime interval being considered for evaluation.The negation operator makes only sense inconjunction with a period during which thenon-occurrence of event instances is monitored.Thus the negation operator needs at least three

operands. The �rst one speci�es the beginningand the last one the ending of the period dur-ing which the non-occurrence of the instancesof the 'inner' types are to be monitored.3.1.2 FrequencyFor every component event type Eij a delim-iter may be speci�ed which restricts the num-ber of event instances of Eij which must occurfor the event condition to evaluate to true. Ifno delimiter is given one or more instances ofa type must occur. As a delimiter an upperand/or a lower bound may be given. Thus thenumber of event instances required for an eventcondition to evaluate to true may be restrictedto a range or even to a concrete number.3.1.3 Coupling and ConcurrencyOperator modes are, among others, usedto de�ne the coupling mode and the concur-rency feature. The mode (coup mode) de-�nes whether event patterns have to occurcontinuously (continuous) or may be inter-rupted by event instances not being relevantfor the event detection (non-continuous).The mode (cc mode) considers the time in-tervals associated with event instances (e !event seq:interval()) and is used to de�newhether the time intervals associated to theevent instances which cause a complex eventto occur may or may not overlap (overlappingvs. non-overlapping).3.2 Event Instance SelectionThe event instance selection is responsible forthe construction of the instance oriented eventinstance sequences, i.e. it determines whatevent instances are taken from the type ori-ented event instance sequence EISEi to formthe event instance sequence EISeisi . This se-lection is performed individually for each com-ponent event type Eij and it is quite natural totake at least all those instances which causedthe complex event to occur.Consider the event instance sequence EIS3 :=ei11 ei12 ei21 ei22 ei32 ei31 ei13, the event type E4 :=; (E1, E2, E3) and the event e14 of E4 which is6

www.manaraa.com

triggered by EIS3. Let us assume that the in-stances ei21 and ei13 have already been selectedfor the types E1 and E3. Thus, we will fo-cus on the selection of instances of the typeE2. Consider the four event instance sets: (1)(ei21 ei22 ei13), (2) (ei21 ei32 ei13), (3) (ei21 ei22 ei32ei13) and (4) (ei12 ei21 ei22 ei32 ei13). While thesets (1) and (2) contain only one instance of E2the sets (3) and (4) contain several instances.The set (1) contains the oldest instance of E2which together with ei21 and ei13 ful�ls the eventcondition of E4 while the set (2) contains itsmost recent instance. Note, that the selectionof event instances depends on instances thatwere already selected: if we had chosen ei11 in-stead of ei21 the instance ei12 would be the old-est instance of E2 which could be selected. Theset (3) contains only instances which occurredbetween the selected instances of E1 and E3and thus takes the event condition into accountwhile the set (4) contains every instance of E2.The selection strategies can be classi�ed ac-cording to the aspect whether only the min-imum number of event instances required bythe delimiter of Eij is selected (minimum in-stance set oriented) or more (cumulative ori-ented) (would be to select in the most extremecase the whole set of event instances of Eij be-longing to EISEi).First (last) are minimum set instance orientedselection strategies. They always select the setof instances with the oldest (youngest) times-tamps. A cumulative oriented selection strat-egy is cumulative which selects the completeinstance set of Eij . The other cumulative ori-ented selection strategy restricted cumula-tive chooses only that instances of Eij that areconsidered by the event condition of Ei (re-stricted cumulative).To get a unique solution one has to de�ne inwhat order event instances have to be collectedfrom the given event instance sequence. Letus consider the event type E4 := ; (last :E1,�rst :E2, E3) and the event sequence EIS3.Since ei13 had triggered the recognition of anevent e14 of E4 it is the terminator instance ofthe time interval assigned to ei14. However, theinitiator instance of ei14 is not yet clear. Ofcourse, it must be an instance of E1. However,which one is to be chosen: ei11 or ei21 or ei31.If the event type sequence were traversed from

right to left, that is �rst the correct instanceof event type E3 is identi�ed (which, of courseis trivial) then the instance of E2 and �nallythe instance of E1, we would have to chooseei13, ei12, and ei11. If we traversed the event typesequence in opposite direction, we would �rsthave to choose ei31 since it represents the lastoccurrence of an event of E1 in EIS3. However,this would not lead to a legal solution becausethe time interval speci�ed by initiator instanceei31 and terminator instance ei13 does not in-clude an instance of E2. Therefore, we have tobacktrack. This means, that �rst or last haveto be interpreted as �rst or last legal instance ofthe given type. The next possibility would beei21. The interval spanned by ei21 and ei13 con-tains ei22 which is not the �rst instance of E2,however, the �rst in the interval spanned byei21 and ei13. Therefore, ei21, ei22, and ei13 wouldbe the correct solution if left to right traversalwere chosen. With right to left traversal ei11,ei12, and ei13 would be the correct solution. Tosummarize, it �rst has to be speci�ed in whatorder the time interval which belongs to a con-crete event instance of an event type has tobe traversed, either from left-to-right or fromright-to-left. The corresponding event instancesequence is then traversed in this order and the�rst legal solution that is identi�ed is the cor-rect one.This semantics can be controlled by the op-erator mode trav mode which can be eitherleft-to-right (default mode) or right-to-left.3.3 Event Instance ConsumptionEvent instance consumption de�nes the impactof the occurrences of events of a complex eventtype Ei on the availability of the events of itscomponent event types for the subsequent de-tection of events of Ei. The set of events whichare considered by the detection of events of thetype Ei are de�ned by the event instance se-quence EISEi. Thus, event instance consump-tion de�nes the set of event instances which aredeleted from EISEi whenever an event esi oc-curs.Consider the event type E3 := ; (last :E1, �rst:E2) and its event instance sequence EISE3 :=ei11 ei21 ei12 ei22. With the occurrence of e12 aninstance ei13 is generated whose event instancesequence EISei13 contains the instances ei21 and7

www.manaraa.com

ei12. Now let us assume that an event instanceeis2 of the type E2 is consumed if it is used inan event instance sequence of a eis3. The occur-rence of ei13 may cause the deletion of (1) ei21or of (2) ei11 and ei21 or (3) no deletion. Depen-dent on this result ei22 will (1+3) or will not (2)trigger another event e23 of E3 and if it is trig-gered ei23 may get the event instance sequence(ei21 ei22) (3) or (ei11 ei22) (1).We distinguish three di�erent consumptionmodes which can be speci�ed individually foreach component event type. The shared modedoes not harm any instance of Eij (3). Theexclusive parameter mode removes all in-stances of Eij from EISEi that belong to theevent instance sequence of an instance eisi (1).The exclusivemode deletes all instances ofEijfrom EISEi that occur before the terminatorinstance of eisi (2).If the same component event type Eij isused several times in the de�nition of Ei thestrongest consumption mode will dominate theweaker ones.3.4 Event GroupsA terminator instance can trigger the recogni-tion of several events of its parent type if it isused in the sharedmode. All such events (eventinstances) of the same event type Ei whichare triggered by the same terminator form anevent group.To avoid in�nite looping (e.g. by in�nitely con-structing event instances from the same ba-sic event instances) di�erent event instancesof the same type must di�er in that they arenot allowed to exclusively use the same (basic)event instances. Consider the event instancesequence EIS4 := ei11 ei21 ei31 ei12 ei41 ei22 ei13and the event type E4 := ; (.... E1, E2,shared :E3). The occurrence of ei13 will triggera number of events of E4, depending on the pa-rameters de�ned for E1 and E2. Let us assumethat E2 has the parameters �rst : exclusiveparameter, E1 is either �rst : shared (com-plex event type E5), last : shared (E6), orrestricted cumulative : shared (E7). Fig-ure 1 presents the semantics of the event types.This example shows that the event instanceselection modes introduced above are not suit-able for the de�nition of event types that be-

e1
1 e1 e1e e e12

2
2
2

: Time interval over which the complex event is detected

: Initiator : Terminator

1
3

3

: Mediator

(I)

E5

(II)

E6

E

(III)

7

e1
4

E

(IV)

8

Figure 1: Event Instance Selection for EventGroupshave like the event type E8 (see �gure 1). Theinstances of the event group of E8 consider allthose event instance sets which contain exactlyone instance for each component event type.To support this semantics the event instanceselection modes combinations and combina-tions minimum are introduced. If one ofthese modes is used for a component type Eijthe di�erent instance sets of Eij are alternatelyused and combined with the event instance setsof the other component event types to form theevent instance sequences event seq of the eventinstances belonging to a group. While themode combinations minimum de�nes thatonly the minimum number of event instancesrequired by the delimiter of Eij are taken intoaccount combinations does not impose thisconstraint, i.e. it can also consider larger setsof event instances.Note, that these modes must only be used forevent types Ei whose events share their termi-nator events.The event type E8 whose behaviour is shownin �gure 1 can be de�ned as E8 := ; (combi-nations minimum : shared : E1, combi-nations minimum : shared : E2, shared :E3).Now consider the event type E5 de�ned aboveand the event instance sequence EIS4 ex-8

www.manaraa.com

tended by ei32 ei23. Figure 2 shows the seman-tics of E5. Every pair of events of E2 and E3will subsequently trigger an event of E5. Theevent instance consumption modes do not o�erthe possibility to distinguish between the avail-ability of event instances inside and outside agroup. Thus event instances that are sharedby instances cannot be protected from beingshared by other groups, too.
: Time interval over which the complex event is detected

: Initiator : Terminator : Mediator

(I)

E5

e1
1 e1

2 e1
2 e2

2e1
3 e1

3e1
4 e2

3 e3
2Figure 2: Event Instance Consumption forEvent GroupsTo cope with this semantics we introduce thedomains inside a group (inside) and outside agroup (outside). They can be used in conjunc-tion with the consumption modes and de�nethe availability of event instances only insideand, additionally about outside a group (as in�gure 2).The event instance consumption for the out-side domain is applied to the union of the eventinstance sequences event seq of the event in-stances belonging to the same group.3.5 Event DetectionThe detection of the events of a event typeEi is performed by its detect() method. It iscalled whenever event instances are insertedinto EISEi. The skeleton of detect() showsthe interactions between the dimensions intro-duced above:detect(){ EVENT_SEQUENCE event_instance_list = {};while (event_condition()){ e := new EVENT;e.event_seq := event_instance_selection();e.time := time_selector();:event_instance_consumption(e);event_instance_list += e;}return (event_instance_list);}

In the �rst step the event condition of theevent type Ei is evaluated. If the conditionis ful�lled a new event instance eisi is gener-ated and - among others - its event instanceselection sequence event seq is computed andthe event instances that were consumed by eisiare �nally deleted from the event instance se-quence EISEi. These steps are repeated untilthe event condition is no longer ful�lled.4 Speci�cation of SnoopIn this chapter the semantics of the event def-inition language Snoop [CKAK94] is speci�edwith our meta model.Snoop has been developed at the Universityof Florida. The concepts of Snoop have beenimplemented in a prototype called Sentinel[CKAK94, Kri94]. The de�nition of the se-mantics of Snoop is only partially formal. Thussometimes - as it is shown in [Zim96] - its se-mantics is ambiguous.In addition to the standard event operatorsconjunction (4), disjunction (r), sequence (;)and negation (NOT) Snoop de�nes the opera-tors: ANY, A, P , A� and P �. Events basedon the ANY operator, denoted as ANY(m, E1,E2, .., En), where m � n, occur whenever mevents out of the n distinct event types occur.Events based on the a-periodic operator A, de-noted as A(E1, E2, E3), occur whenever thea-periodic event (E2) occurs during the closedtime interval speci�ed by E1 and E3. The pe-riodic operator P is used to de�ne periodicallyoccurring temporal events. A� and P � are cu-mulative versions of the operators A and P , i.e.events based on them are only triggered onceat the end of the time interval (E3).Based on the initiator and terminator eventsSnoop de�nes four parameter contexts:In the recent context only the most recent in-stance of the set of instances that may havestarted the detection of a complex event is used.When a complex event occurs the instances ofthe component event types which cannot be ini-tiators of future events are deleted. An initia-tor of an event continues to initiate new eventoccurrences until a new initiator occurs.In the chronicle context the oldest instance ofeach component event type is bound to the in-9

www.manaraa.com

stances of its parent type. The instances of thecomponent event types can only be used once.In the continuous context, if a terminatorevent is detected, for each initiator an eventinstance of its parent type is generated. In thiscontext, an initiator is used at least once fordetecting complex events.In the cumulative context all instances of thecomponent event types are bound to the in-stance of the parent type. The instances of thecomponent event types can only be used oncefor an event detection.Every Snoop operator can be combined withone of these parameter contexts to form anevent type. A complex event can be con-structed by applying several operators whichmay have assigned di�erent parameter con-texts. This aspect has not been investigatedby Snoop in further detail.In contrast to our model the parameter modesof Snoop can be speci�ed on the level of com-plex event types rather than on the componentevent type level. The parameter contexts de-�ne a �xed combination of the values of thedimensions event instance selection and eventinstance consumption introduced in our model.Thus the con�guration possibilities o�ered bySnoop are limited to these combinations.Table 3 presents the speci�cation of Snoop onthe basis of our meta model. The �rst columnof the table presents in each block the de�nitionof an event type. The �rst de�nition is basedon Snoop while the second one is based on ourmeta model. The second column lists the com-ponent event types that are necessary for thede�nition of the complex event types on thebasis of our meta model. The other columnsshow how the di�erent parameter contexts ofSnoop can be modelled in our meta model. Forevery component event type the values of thedimensions event instance selection and eventinstance consumption are listed. We have usedthe following abbreviations for these values: shfor shared, ex for exclusive, in for inside, outfor outside, param for parameter, cum forcumulative, comb for combinations, min forminimum and rest for restricted. Wheneverthe semantics of Snoop, from our point of view,was ambiguous or irregular we marked it byadding the '?' and '?!' symbols.Let us consider some examples which describe

some irregularities of Snoop which were de-tected with the help of our speci�cation pre-sented in table 3. In these examples the Snoopevent types are denoted by a parameter contextfollowed by an event operator and its operands.Consider the event types E4 := recent E1;E3and E5 := recent NOT(E2)[E1,E3] and theevent instance history EIH1 := ei11 ei13 ei23.The history EIH1 causes the recognition oftwo events e14 and e24 of E4 represented by ei14(EISei14 := ei11ei13) and ei24 (EISei24 := ei11ei23)but of only one event e15 of E5 represented byei15 (EISei15 := ei11ei13).An event type based on the negation operator isan extension of the event type based on the se-quence operator de�ning the time interval dur-ing which the non-existence of events is moni-tored. Thus in the case of the non-occurrenceof the speci�ed events one would assume thatthe behaviour of these event types is the same.But, unfortunately, they use di�erent event in-stance consumption modes for their �rst com-ponent event type: While the event type basedon the sequence operator uses the shared modethe event type based on the negation operatoruses the exclusive mode.The recent and the chronicle parameter con-texts use di�erent event instance consumptionmodes. While in the recent parameter con-text the event instances are often3 shared theyare used exclusively in the chronicle parametercontext:Consider the event types E3 := recent (E1 4E2) and E4 := chronicle (E1 4 E2) and theevent instance history EIH2 := ei11 ei12 ei22.The history EIH2 causes the recognition oftwo events e13 and e23 of E3 represented by ei13(EISei13 := ei11ei12) and ei23 (EISei23 := ei11ei22)but of only one event e14 of E4 represented byei14 (EISei14 := ei11ei12).The event instance consumption mode of the�rst component event type of events based onthe a-periodic operator used in the chroniclecontext is exclusive parameter. Thus, thecharacteristics of the a-periodic operator getlost, as it is signalled only once (for every eventinstance of the �rst component event type).Consider the event typeE4 := chronicle A(E1,E2, E3) and the event instance history EIH3:= ei11 ei12 ei22 ei32 ei13. The history EIH3 causes3Only terminator events are used exclusively.10

www.manaraa.com

last : first :

last :

recent chronicle continous cumulative

E1 E2

()E1 E2,

= E1
E2 first :

sh :

sh :

ex param :

ex param :

cum : ex param :

cum : ex param :

E1 E2 =

()E1 E2,

ex param :

ex param :

ex param :

ex param :

ex param :

ex param :

ex param :

ex param :

E1 E2

()E1 E2,

=;

;

last : sh :

ex param :

first : ex param :

ex param :

cum :

ex param :

ANY ()E1 E2, E3,3,

?= ()E1 E2, E3,

E1
E2

E3

ex param :

ex param :

ex param :

first :

first :

first :

cum : ex param :

cum : ex param :

cum : ex param :

E1
E2

E1
E2

NOT E2() E1 E3[],

= ()E1 E2, E3,

E1
E3

last : ex first : ex param :

ex param :ex param :

ex param :

ex param :

ex param :?

A ()E1 E2,E3, =

()E1 E2, E3,

E1
E3

last : sh :

ex param :

first : ex param :

ex param : ex param :?! ?!

?!

A = E1

E3

* ()E1 E2, E3,

E2

last :

?

ex :

ex :

ex param :()E1 E2, E3,;)

(E1 E2, E3,(,)

first : ex param :

ex param :

sh :rest cum :

?!
rest cum :

? first :

rest cum : ex :

ex param :

? first : ex :?!

ex :

?!

comb min :

comb min :

comb min :

comb min :

comb min :

comb min :

comb min :

comb min :

comb min :

? The semantics are not quite clear ?! The semantics seem to be irregular

comp. event type

parameter
context

event type

sh in : ex out :

ex out :sh in :

sh in :

sh in :

sh in :

ex out :

ex out :

ex out :

sh in :

sh in :

sh in :

sh in :

sh out :

ex param out :

ex out :

ex out :

ex param out :

ex param in :

ex param in :

ex param in :

ex param out :

ex out :

ex param in : ex out :

ex param out :

Figure 3: The semantics of the complex events de�ned in Snoopthe recognition of only one event e14 of E4 rep-resented by ei14 (EISei14 := ei11ei12) and not - asone may expect - three events.Let us consider event types based on the a-periodic operator A used in the continuous pa-rameter context. The event instance consump-tion mode of their �rst component event type isexclusive parameter inside : shared out-side, i.e. its instances can only be used onceinside a group but they are shared between dif-ferent groups. Thus instances of the secondcomponent event type occurring after an in-stance of the �rst type are not only associatedwith this instance but also with every older in-stance of the �rst type:Consider the event type E4 := continuousA(E1, E2, E3) and the event instance historyEIH4 := ei11 ei12 ei21 ei22 ei32. The history EIH4causes the recognition of the events e14, e24, e34,e44 and e54 of E4 represented by ei14 (EISei14 :=ei11ei12), ei24 (EISei24 := ei11ei22), ei34 (EISei34 :=ei21ei22), ei44 (EISei44 := ei11 ei32) and ei54 (EISei54:= ei21ei32).

5 Related WorkA systematic and profound debate about eventspeci�cation has not yet started. Instead, �rst,however, often fragmentary attempts can befound in papers describing speci�c rule mod-els or prototype systems.In ADL (Activity Description Language)[Beh94] the event instance selection policy is�xed to the last mode4. The event instanceconsumption strategy is �xed too and corre-sponds to the exclusive parameter mode.In Ode [GJS92] the semantics of the event in-stance selection is discussed shortly. The se-lection of event instances consists of two steps:In the �rst step the alternative event instancesequences which ful�l the event condition arecomputed. In the second step the event in-stance selection is performed through querieson the event instance sequence set computed inthe �rst step. A detailed description of possibleselection strategies as well as their realizationis postponed to a future paper.For every event condition a �xed event instance4It is mentioned that in principal di�erent event in-stance selection policies may be used. But this topic isnot examined in further detail.11

www.manaraa.com

consumption policy is chosen. For instance,event types based on the sequence operatorhave the following semantics: E3 := ; (�rst: exclusive parameter : E1, shared : E2).For the operators of the event algebra ofSAMOS [Gat94] the event instance selectionand event instance consumption policies are�xed. But the user has the possibility to partlyinuence these aspects by using di�erent com-binations of operators. To see this let us havea look at a sequence of events. We will ex-amine three di�erent kinds of SAMOS opera-tors which can be combined with the SAMOSsequence operator: The *-operator, the last-operator and the TIMES-operator. Considerthe four SAMOS event types E3 := (E1; E2),E4 := (�E1; E2), E5 := (lastE1; E2), E6:= (TIMES([>0],E1); E2). Their semanticsseems5 to be equivalent to the semantics of thefollowing event types of our model:E3 := ;(�rst : exclusive parameter : E1,exclusive parameter : E2),E4 := ;(�rst : exclusive parameter : E1,exclusive parameter : E2),E5 := ;(last : exclusive parameter : E1,exclusive parameter : E2),E6 := ;(cumulative : exclusive parameter: E1, exclusive parameter : E2).The event instance consumption mode sharedis not available in SAMOS. To summarize,SAMOS o�ers some �xed combinations of theevent instance selection and the event instanceconsumption modes. Thus the con�gurationpossibilities are restricted.Note that the semantics of the SAMOS eventtype E3 := (lastE1; E2) is di�erent to the se-mantics of the Snoop event type E4 := recentE1;E2.To our very best knowledge [CFPT95] is theonly work, that presents a formal model of anactive database system which is composed of aset of dimensions. This work might be seen asan extension of [PDW+93].According to complex events only one dimen-sion, called event instance consumption,has been presented. But this dimension is usedin a di�erent way than we have used it: Intheir model event instance consumption deter-mines when events become invalid for the trig-5Because of the informal de�nition of the semanticsof the composition of operators it is not really clear,which semantics is used.

gering of rules while we consider event instanceconsumption as the aspect, which de�nes whenevents become invalid for the detection of otherevents.6 ConclusionsIn this paper we have presented a formal metamodel which de�nes the semantics of com-plex events. It is based on the three dimen-sions event condition, event instance se-lection and event instance consumption.The event condition is responsible for thespeci�cation of the point in time events oc-cur, the event instance selection de�neswhich events are bound to a complex event andthe event instance consumption determineswhen events become invalid, that is can not beconsidered for the detection of complex eventsany longer.In principle, while an event condition is asso-ciated to an event type itself the dimensionsevent instance selection and event instance con-sumption are related to the component eventtypes of complex event types.The three dimensions are independent with re-spect to their usage, i.e. they can be combinedwithout any restrictions. Especially the eventinstance selection and the event instance con-sumption policies can be chosen separately foreach component event type of a complex eventtype. Moreover our model considers simultane-ously occurring events.The model presented in this paper contributesto the ongoing work in the area of activedatabase systems in several ways:1. We developed a exible meta model whichcan be used to specify the semantics ofcomplex events de�ned in other rule mod-els.2. The presented model can be used to com-pare the semantics of complex events de-�ned in existing rule models.3. Our model can be used as a base for thede�nition of new rule models. A higherlevel interface can be built on top of themodel to enhance the applicability.4. The semantics of our model is de�ned for-mally. Thus di�erent interpretations of12

www.manaraa.com

the semantics of a given complex event arenot possible.5. The meta model helps to gain a better un-derstanding of the basics complex eventsrely on and their interrelationships.7 AppendixFormally the syntax of a complex event type isde�ned as follows:< CET > ::= [< time select > :]< event cond >< event cond > ::= [< op mode >] < OP >(< CPET list >)< CPET list > ::= < CPET > j< CPET > , < CPET list >< CPET > ::= [< opd mode >] < ET >< ET > ::= < PET > j < CET >< OP > ::= == j ; j ^ j _ j :< op mode > ::= [< cc mode > :] [< coup mode > :][< trav mode > :]< cc mode > ::= non-overlapping j overlappingj [default : overlapping]< coup mode > ::= continuous j non-continuousj [default : non-continuous]< trav mode > ::= left-to-right j right-to-leftj [default : left-to-right]< opd mode > ::= [< par select > :][< cosu > :] [< delimiter > :]< par select > ::= �rst j last j cumulativej restricted cumulativej combinations [minimum]j [default : last]< cosu > ::= inside < cosu mode > :outside < cosu mode >j < cosu mode >< cosu mode > ::= exclusive j sharedj exclusive parameter j[default:exclusive parameter]< delimiter > ::= (< integer >) j (< range >)< range > ::= < integer > - < integer > j< integer > - j - < integer >< time select > ::= begin j end j [default : end]The de�nition of the syntax reects the threedimensions of the semantics of a complex event:The event condition is de�ned by an operator(op), an operator mode (op mode) and a list ofcomponent event types (CPET list) if neces-sary supplemented by a delimiter. The eventinstance selection is de�ned by the modespar select and trav mode while the event in-stance consumption is de�ned by the modecosu.

References[Beh94] H. Behrends. An Operational Semantics forthe Activity Descpription Language ADL.Technical Report TR-IS-AIS-94-04, Univer-sit�at Oldenburg, June 1994.[CFPT95] S. Comai, P. Fraternali, G. Psaila, andL. Tanca. A Uniform Model to Expressthe Behaviour of Rules with Di�erent Se-mantics. In M. Berndtsson and J. Hansson,editors, First Int'l Workshop on Active andReal-Time Database Systems (ARTDB-95),1995.[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. An-war, and S.-K. Kim. Composite Events forActive Databases: Semantics, Contexts andDetection. In Proc. 20th Very Large DataBases, pages 606{617, October 1994.[Gat94] Stella Gatziu. Events in an Active, Object-Oriented Database System. Phd-Thesis. Dr.Kovac, November 1994.[GJS92] N.H. Gehani, H.V. Jagadish, andO. Shmueli. Composite Event Speci�-cation in Active Databases: Model andImplementation. In Proc. 18th Very LargeData Bases, pages 327{338, October 1992.[Kri94] V. Krishnaprasad. Event Detection for Sup-porting Active Capability in an OODBMS:Semantics, Architecture and Implementa-tion. Master's thesis, University of Florida,1994.[PDW+93] N.W. Paton, O. Diaz, M.H. Williams,J. Campin, A. Dinn, and A. Jaime. Di-mensions of Active Behaviour. In N. W.Paton and M H. Williams, editors, Rules inDatabase Systems, Edinburgh 1993, pages40{57, 1993.[Zim96] D. Zimmer. A Formal Metamodel forthe De�nition of the Semantics of Com-plex Events. C-LAB Report 29, C-LAB, F�urstenallee 11, 33102 Paderborn,Germany, http://www.c-lab.de, December1996.
13

